advertisement
advertisement

These 4 tech breakthroughs could help people live to 200 years old

Genetic engineering, regenerative medicine, wearables, and AI combine to form a powerful antidote to aging, writes venture capitalist Sergey Young.

These 4 tech breakthroughs could help people live to 200 years old
[Source photo: Benjamin Davies/Unsplash]
advertisement
advertisement
advertisement

We live in a unique time when for the first time in human history there is a real opportunity to extend our lives dramatically. Recent scientific discoveries and technological breakthroughs that soon will translate into affordable and accessible life-extending “tools” will let us break the sound barrier of the current known record of 122 years. I am talking about breakthroughs in genetic engineering, regenerative medicine, healthcare hardware, and health data.

advertisement
advertisement

Very soon, slowing, reversing, or even ending aging will become a universally accepted ambition within the healthcare community. Technology is converging to make this a certainty. Developments in the understanding and manipulation of our genes and cells, in the development of small-scale health diagnostics, and in the leveraging of data for everything from drug discovery to precision treatment of disease are radically changing how we think about healthcare and aging.

When I speak of the Longevity Revolution, what I really mean is the cumulative effect of multiple breakthroughs currently underway across several fields of science and technology. Together, these parallel developments are forming the beginning of a hockey-stick growth curve that will deliver world-changing outcomes.

THE GENETIC ENGINEERING BREAKTHROUGH

Completed in 2003, the Human Genome Project successfully sequenced the entire human genome—all 3 billion nucleotide base pairs representing some 25,000 individual genes. The project, arguably one of the most ambitious scientific undertakings in history, cost billions of dollars and took 13 years to complete. Today, your own genome can be sequenced in as little time as a single afternoon, at a laboratory cost of as little as $200.

advertisement
advertisement

The consequences of this feat are nothing short of revolutionary. Gene sequencing allows us to predict many hereditary diseases and the probability of getting cancer. This early benefit of gene sequencing became widely known when Angelina Jolie famously had a preventative double mastectomy after her personal genome sequencing indicated a high vulnerability to breast cancer. Genome sequencing helps scientists and doctors understand and develop treatments for scores of common and rare diseases. Along with advances in artificial intelligence, it helps determine medical treatments precisely tailored to the individual patient.

Longevity scientists have even identified a number of so-called longevity genes that can promise long and healthy lives to those who possess them. Scientists now understand far better than ever before the relationship between genes and aging. And while our genes do not significantly change from birth to death, our epigenome—the system of chemical modifications around our genes that determine how our genes are expressed—does. The date on your birth certificate, it turns out, is but a single way to determine age. The biological age of your epigenome, many longevity scientists now believe, is far more important.

Best of all, however, science is beginning to offer ways to alter both your genome and epigenome for a healthier, longer life. New technologies like CRISPR-Cas9 and other gene-editing tools are empowering doctors with the extraordinary ability to actually insert, delete, or alter an individual’s genes. In the not terribly distant future, we will be able to remove or suppress genes responsible for diseases and insert or amplify genes responsible for long life and health.

advertisement

Gene editing is just one of the emerging technologies of the genetic revolution: Gene therapy works by effectively providing cells with genes that produce necessary proteins in patients whose own genes cannot produce them. This process is already being applied to a few rare diseases, but it will soon become a common and incredibly effective medical approach. The FDA expects to approve 10 to 20 such therapies by the year 2025.

THE REGENERATIVE MEDICINE BREAKTHROUGH

Another major transformation driving the Longevity Revolution is the field of regenerative medicine. During aging, the body’s systems and tissues break down, as does the body’s ability to repair and replenish itself. For that reason, even those who live very long and healthy lives ultimately succumb to heart failure, immune system decline, muscle atrophy, and other degenerative conditions. In order to achieve our ambition of living to 200, we need a way to restore the body in the same way we repair a car or refurbish a home.

Several promising technologies are now pointing the way to doing just that. While it is still quite early, there are already a few FDA-approved stem cell therapies in the United States targeting very specific conditions. Stem cells—cells whose job it is to generate all the cells, tissues, and organs of your body—gradually lose their ability to create new cells as we age. But new therapies, using patients’ own stem cells, are working to extend the body’s ability to regenerate itself. These therapies hold promise for preserving our vision, cardiac function, joint flexibility, and kidney and liver health; they can also be used to repair spinal injuries and help treat a range of conditions from diabetes to Alzheimer’s disease. The FDA has approved 10 stem cell treatments, with more likely on the way.

advertisement

It’s one thing to replenish or restore existing tissues and organs using stem cells, but how about growing entirely new organs? As futuristic as that sounds, it is already beginning to happen. Millions of people around the world who are waiting for a new heart, kidney, lung, pancreas, or liver will soon have their own replacement organs made to order through 3D bio-printing, internal bioreactors, or new methods of xenotransplantation, such as using collagen scaffoldings from pig lungs and hearts that are populated with the recipient’s own human cells.

Even if this generation of new biological organs fails, mechanical solutions will not. Modern bioengineering has successfully restored lost vision and hearing in humans using computer sensors and electrode arrays that send visual and auditory information directly to the brain. A prosthetic arm developed at Johns Hopkins is one of a number of mechanical limbs that not only closely replicate the strength and dexterity of a real arm but also can be controlled directly by the wearer’s mind—just by thinking about the desired movement. Today, mechanical exoskeletons allow paraplegics to run marathons, while artificial kidneys and mechanical hearts let those with organ failure live on for years beyond what was ever previously thought possible!

THE HEALTHCARE HARDWARE BREAKTHROUGH

The third development underpinning the Longevity Revolution will look more familiar to most: connected devices. You are perhaps already familiar with common wearable health-monitoring devices like the Fitbit, Apple Watch, and Ōura Ring. These devices empower users to quickly obtain data on one’s own health. At the moment, most of these insights are relatively trivial. But the world of small-scale health diagnostics is advancing rapidly. Very soon, wearable, portable, and embeddable devices will radically reduce premature death from diseases like cancer and cardiovascular disease, and in doing so, add years, if not decades, to global life expectancy.

advertisement

[Photo: BenBella Books]
The key to this part of the revolution is early diagnosis. Of the nearly 60 million lives lost around the globe each year, more than 30 million are attributed to conditions that are reversible if caught early. Most of those are noncommunicable diseases like coronary heart disease, stroke, and chronic obstructive pulmonary disease (bronchitis and emphysema). At the moment, once you have gone for your yearly physical exams, stopped smoking, started eating healthy, and refrained from having unprotected sex, avoiding life-threatening disease is a matter that is largely out of your hands. We live in a world of “reactive medicine.” Most people do not have advanced batteries of diagnostic tests unless they’re experiencing problems. And for a large percentage of the world’s population, who live in poor, rural, and remote areas with little to no access to diagnostic resources, early diagnosis of medical conditions simply isn’t an option.

But not for long. Soon, healthcare will move from being reactive to being proactive. The key to this shift will be low-cost, ubiquitous, connected devices that constantly monitor your health. While some of these devices will remain external or wearable, others will be embedded under your skin, swallowed with your breakfast, or remain swimming through your bloodstream at all times. They will constantly monitor your heart rate, your respiration, your temperature, your skin secretions, the contents of your urine and feces, free-floating DNA in your blood that may indicate cancer or other disease, and even the organic contents of your breath. These devices will be connected to each other, to apps that you and your healthcare provider can monitor, and to massive global databases of health knowledge. Before any type of disease has a chance to take a foothold within your body, this armory of diagnostic devices will identify exactly what is going on and provide a precise, custom-made remedy that is ideal just for you.

As a result, the chance of your disease being diagnosed early will become radically unshackled from the limitations of cost, convenience, and medical knowledge. The condition of your body will be maintained as immaculately as a five-star hotel, and almost nobody will die prematurely of preventable disease.

advertisement

THE HEALTH DATA INTELLIGENCE BREAKTHROUGH

There is one final seismic shift underpinning the Longevity Revolution, and it’s a real game-changer. Pouring forth from all of these digital diagnostic devices, together with conventional medical records and digitized research results, is a torrent of data so large it is hard for the human mind to even fathom it. This data will soon become grist for the mill of powerful artificial intelligence that will radically reshape every aspect of healthcare as we know it.

Take drug discovery, for instance. In the present day, it takes about 12 years and $2 billion to develop a new pharmaceutical. Researchers must painstakingly test various organic and chemical substances, in myriad combinations, to try to determine the material candidates that have the best chance of executing the desired medical effect. The drugs must be considered for the widest range of possible disease presentations, genetic makeup, and diets of targeted patients, side effects, and drug interactions. There are so many variables that it is little short of miraculous that our scientists have done so much in the field of pharmaceutical development on their own. But developing drugs and obtaining regulatory approval is a long and cash-intensive process. The result is expensive drugs that largely ignore rarer conditions.

AI and data change that reality. Computer models now look at massive databases of patient genes, symptoms, disease species, and millions of eligible compounds to quickly determine which material candidates have the greatest chance of success, for which conditions, and according to what dose and administration. In addition to major investments by Big Pharma, there are currently hundreds of startups working to implement the use of AI to radically reshape drug discovery, just as we saw happen in the race to develop COVID-19 vaccines. The impact that this use of AI and data will have on treating or even eliminating life-threatening diseases cannot be overstated.

advertisement

But that is not the only way that artificial intelligence is set to disrupt healthcare and help set the Longevity Revolution in motion. It will also form the foundation of precision medicine—the practice of custom-tailoring health treatments to the specific, personal characteristics of the individual.

Today, healthcare largely follows a one-size-fits-all practice. But each of us has a very unique set of personal characteristics, including our genes, microbiome, blood type, age, gender, size, and so on. AI will soon be able to access and analyze enormous aggregations of patient data pulled together from medical records, personal diagnostic devices, research studies, and other sources to deliver highly accurate predictions, diagnoses, and treatments, custom-tailored to the individual. As a result, healthcare will increasingly penetrate remote areas, becoming accessible to billions of people who today lack adequate access to medical care.

I predict that the development of AI in healthcare will change how we live longer, healthier lives as radically as the introduction of personal computers and the internet changed how we work, shop, and interact. Artificial intelligence will eliminate misdiagnosis; detect cancer, blood disease, diabetes, and other killers as early as possible; radically accelerate researchers’ understanding of aging and disease; and reestablish doctors as holistic care providers who actually have time for their patients. In as little as 10 years’ time, we will look back at the treatment of aging and disease today as quite naive.

advertisement

The Longevity Revolution lives not in the realm of science fiction but in the reality of academic research laboratories and commercial technology R&D centers. The idea of aging as a fixed and immutable quality of life that we have no influence upon is ready to be tossed into the dustbin of history.


Sergey Young is a renowned VC, longevity visionary, and founder of the $100 million Longevity Vision Fund. This is an adapted excerpt from The Science and Technology of Growing Young, with permission by BenBella Books.