One afternoon this past summer, Jeong Kim took a seat at a quiet back table of a suburban New Jersey restaurant and removed a pen from his jacket pocket. Without speaking, Kim cleared away the salt and pepper shakers and brushed away some crumbs. Then he leaned forward and drew a square on the paper tablecloth. He paused. Then he drew another square behind the first and carefully transformed the diagram into a cube.
Our topic was innovation. A few months before, Kim said, he’d been invited to give a speech on the subject in China. But he wasn’t precisely sure what to say. Half of the problem was linguistic. China’s engineers might consider a technology “new” or “improved,” but “innovative” defied exact translation. The other half of the problem was philosophical. “Everyone talks about innovation; everyone wants it,” Kim remarked, but do we really understand what it means or what it takes?
Now 46, Kim has spent much of his professional life as an entrepreneur. In the late 1990s, he sold his second startup, Yurie Systems, to Lucent Technologies for around $1 billion; his personal share worked out to more than $500 million. The man clearly knows how to innovate. And yet that didn’t make preparing for his speech any easier. So Kim laced up his running shoes. Maybe it was at the 10-mile mark, maybe the 12-mile mark. But at some point, he began to think of innovation as the options and contingencies a would-be innovator confronts every day. He envisioned a cube. One dimension, or one axis, could represent the impact of a particular innovative effort: Would it be incremental or revolutionary? Another axis could represent the process of innovation: Would it be achieved through painstaking analytic work or through artistic inspiration? The third axis was time itself: Was the innovation driven by the market today or in the distant future? None of this would tell his audience what or when to innovate–small inventions could be as lucrative as big ones and ideas for next year as disruptive as products for five years hence. Nor would this offer a foolproof strategy for how to innovate, since hiring an eccentric genius could prove as valuable as an overcaffeinated entrepreneur. But it did suggest to Kim that, for any company, innovation required visualizing the whole future, perhaps within something like this cube, a 3-D box where every idea in your portfolio was judged and plotted in relation to its potential impact, time to market, and creative process.
On the restaurant tablecloth, Kim kept drawing, explaining, labeling the corners and faces of the cube as he went along. What had begun as a PowerPoint slide for the Chinese ministers 7,000 miles away, he said, had since come to define his work as president of Bell Labs. For most of its history, Bell Labs served as the research division of AT&T. It was a fabled conglomeration of about 3,000 scientists that could lay claim to being the greatest innovation factory of modern times. In recent years, though, it has foundered as it became the research division of Lucent, now Alcatel-Lucent. The huge telecom-equipment manufacturer has stumbled and downsized in an unrelentingly difficult business climate, leaving the Labs with about 1,200 scientists and an ill-defined future.